

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

5 5 7 2 6 8 0 2 0 5

FURTHER MATHEMATICS

9231/12

Paper 1 Further Pure Mathematics 1

May/June 2023

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

DC (PQ) 311427/1 © UCLES 2023

[Turn over

1	T .4 A	/3	0
1	Let $A =$	$\backslash 1$	1)

	$2\mathbf{A}^n = \begin{pmatrix} 2 \times 3^n & 0 \\ 3^n - 1 & 2 \end{pmatrix}.$	[
Find, in terms of n , the inverse of \mathbf{A}^n		[

(a)	Find the value of $\alpha^2 + \beta^2 + \gamma^2$.	
		•••••
(b)	Use standard results from the list of formulae (MF19) to show that $\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$	
(b)		
(b)	$\sum_{r=1}^{n} ((\alpha + r)^{2} + (\beta + r)^{2} + (\gamma + r)^{2}) = n(n^{2} + an + b),$	
(b)	$\sum_{r=1}^{n} ((\alpha + r)^{2} + (\beta + r)^{2} + (\gamma + r)^{2}) = n(n^{2} + an + b),$	
(b)	$\sum_{r=1}^{n} ((\alpha + r)^{2} + (\beta + r)^{2} + (\gamma + r)^{2}) = n(n^{2} + an + b),$	
(b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$ where a and b are constants to be determined.	
(b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$ where a and b are constants to be determined.	
(b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$ where a and b are constants to be determined.	
(b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$ where a and b are constants to be determined.	
(b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$ where a and b are constants to be determined.	
(b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$ where a and b are constants to be determined.	
(b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$ where a and b are constants to be determined.	
(b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$ where a and b are constants to be determined.	
(b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$ where a and b are constants to be determined.	
(b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + b),$ where a and b are constants to be determined.	

•••••
 ••••••
••••••
••••••
••••••
• • • • • • • • • • • • • • • • • • • •

3	(a)	Use the method of differences to find $\sum_{r=1}^{n} \frac{1}{(kr+1)(kr-k+1)}$ positive constant.	in terms of n and k , where k is a [4]
		positive constant.	ידן.

(b)	Deduce the value of $\sum_{r=1}^{\infty} \frac{1}{(kr+1)(kr-k+1)}.$	[1]
		•••••
(c)	Find also $\sum_{r=n}^{n^2} \frac{1}{(kr+1)(kr-k+1)}$ in terms of n and k .	[2]
		•••••
		•••••

	e matrix M is given by $\mathbf{M} = \begin{pmatrix} a & b^2 \\ c^2 & a \end{pmatrix}$, where a, b, c are real constants and $b \neq 0$.
(a)	Show that M does not represent a rotation about the origin. [2
(b)	Find the equations of the invariant lines, through the origin, of the transformation in the $x-y$ plane represented by \mathbf{M} .

enla	is given that M represents the sequence of two transformations in the $x-y$ argement, centre the origin, scale factor 5 followed by a shear, x -axis fixed, $5,1$).	plane given by an with (0,1) mapped
(c)	Find M.	[3]
(d)	The triangle <i>DEF</i> in the $x-y$ plane is transformed by M onto triangle <i>PQR</i> .	
	Given that the area of triangle DEF is 12 cm^2 , find the area of triangle PQR .	[2]
	orven that the area of triangle DET is 12 cm, that the area of triangle 1 gr.	[2]

The curve *C* has polar equation $r^2 = \frac{1}{\theta^2 + 1}$, for $0 \le \theta \le \pi$.

5

	Sketch C and state the polar coordinates of the point of C furthest from the pole.	[3]
(b)	Find the area of the region enclosed by C , the initial line, and the half-line $\theta = \pi$.	[4]
		•••••

$\left(\theta + \frac{1}{\theta}\right)\cot\theta - 1 = 0$
and verify that this equation has a root between 1.1 and 1.2.

(a)	Find the equations of the asymptotes of <i>C</i> .	[2
(b)	Show that C has no stationary points.	
(b)	Show that C has no stationary points.	[
(b)	Show that C has no stationary points.]
(b)		

(c)	Sketch C, stating the coordinates of the intersections with the axes.					
(d)	Sketch the curve with equation $y = \left \frac{x^2 - 2x - 15}{x - 2} \right $.	[2]				

1		I	es of x for w		
 	•••••				•••••
		•••••			
 			,	•••••	
 	•••••				
 ••••••	•••••	••••••			•••••
 •••••		•••••			•••••
					•••••
 	•••••				

(a)	Obtain an equation of Π_1 in the form $px + qy + rz = d$.	
(b)	The plane Π_2 has equation $\mathbf{r} \cdot (-5\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}) = 4$.	
(b)	The plane Π_2 has equation $\mathbf{r.}(-5\mathbf{i}+3\mathbf{j}+5\mathbf{k})=4$. Find a vector equation of the line of intersection of Π_1 and Π_2 .	
(b)		
(b)		
(b)		
(b)	Find a vector equation of the line of intersection of Π_1 and Π_2 .	
(b)		
(b)	Find a vector equation of the line of intersection of Π_1 and Π_2 .	
(b)	Find a vector equation of the line of intersection of Π_1 and Π_2 .	
(b)	Find a vector equation of the line of intersection of Π_1 and Π_2 .	
(b)	Find a vector equation of the line of intersection of Π_1 and Π_2 .	
(b)	Find a vector equation of the line of intersection of Π_1 and Π_2 .	
(b)	Find a vector equation of the line of intersection of Π_1 and Π_2 .	
(b)	Find a vector equation of the line of intersection of Π_1 and Π_2 .	

The line l passes through the point A with position vector $a\mathbf{i} + a\mathbf{j} + (a-7)\mathbf{k}$ and is parallel to $(1-b)\mathbf{i} + b\mathbf{j} + b\mathbf{k}$, where a and b are positive constants.

	•				
•••••	•••••				• • • • • • • • • • • • • • • • • • • •
					• • • • • • • • • • • • • • • • • • • •
					• • • • • • • • • • • • • • • • • • • •
		•••••			
~.			. 3		
Given that the	obtuse angle b	between l and Π_1	is $\frac{3}{4}\pi$, find the exa	ct value of b.	

Additional page

If you use the following page to complete the answer to any question, the question number must be clear shown.	ly
	•••
	•••
	•••
	•••
	•••
	•••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.